iPiano: Inertial Proximal Algorithm for Non-convex Optimization

P. Ochsa, Y. Chenb, T. Broxa, and T. Pockb

aDepartment of Computer Science
University of Freiburg
79110 Freiburg, Germany
\{ochs,brox\}@informatik.uni-freiburg.de

bInstitute for Computer Graphics and Vision
Graz University of Technology
8010 Graz, Austria
\{cheny,pock\}@icg.tugraz.at

We study an algorithm for solving a minimization problem composed of a differentiable (possibly non-convex) and a convex (possibly non-differentiable) function. The proposed algorithm - named iPiano - combines forward-backward splitting with an inertial force and hence can be seen as an extension of the celebrated heavy-ball method proposed by Polyak already in 1964. A rigorous analysis of the proposed algorithm based on the Kurdyka-Lojasiewicz inequality yields global convergence for both the function values and the iterates. This makes the algorithm robust for minimizing the considered class of non-convex problems.

We demonstrate iPiano on computer vision problems: image denoising with learned priors and diffusion based image compression.